Concatenates .txt files generated by the sampling_algorithm_structural_analysis algorithm, and calculates probabilities of failure and reliability indexes based on the data.
results_about_data, failure_prob_list, beta_list = concatenates_txt_files_sampling_algorithm_structural_analysis(setup)
Input variables
Name | Description | Type |
---|---|---|
setup | Dictionary containing the main settings. Keys include:
| Dictionary |
Output variables
Name | Description | Type |
---|---|---|
results_about_data | A DataFrame containing the concatenated results from the .txt files. | DataFrame |
failure_prob_list | A list containing the calculated failure probabilities for each indicator function. | List |
beta_list | A list containing the calculated reliability indices (beta) for each indicator function. | List |
Here's an example of how to organize the directory structure with the input files. See following:
└── concat.ipynb # or concat.py
└── results_path
└── result_sampling_algorithm_structural_analysis_0.txt
└── result_sampling_algorithm_structural_analysis_1.txt
└── result_sampling_algorithm_structural_analysis_2.txt
...
└── result_sampling_algorithm_structural_analysis_n-1.txt
└── result_sampling_algorithm_structural_analysis_n.txt
The function expects to find multiple
.txt
files in thefolder_path
directory. Ensure that the file format follows the described structure, with columns separated by tabs (\t
) and necessary columns (X_
,G_
,I_
). This format ensures that the function can correctly concatenate the data and perform the expected calculations.
Example 1
This example demonstrates how the concatenates_txt_files_sampling_algorithm_structural_analysis
function processes a folder containing .txt files. Consider example 2 in sampling_algorithm_structural_analysis
. We generate samples three times (10000 samples) with this code.
# Libraries
import os
import pandas as pd
from tabulate import tabulate
from parepy_toolbox import concatenates_txt_files_sampling_algorithm_structural_analysis
# Run algorithm
setup = {
'folder_path': 'results_path',
'number of state limit functions or constraints': 1,
'numerical model': {'model sampling': 'mcs-time'},
'name simulation': 'new_simulation_results'
}
results, pf, beta = concatenates_txt_files_sampling_algorithm_structural_analysis(setup)
pf
Output details.
13:10:54 - Uploading files!
13:10:59 - Finished Upload in 4.43e+00 seconds!
13:10:59 - Started evaluation beta reliability index and failure probability...
13:10:59 - Finished evaluation beta reliability index and failure probability in 1.99e-02 seconds!
13:11:14 - Voilà!!!!....simulation results saved in simulation_results_MCS-TIME_20240910-131059.txt
pf:
+-----------------------+
| G_0 |
+-----------------------+
| 0.0018821428571428572 |
| 0.0025428571428571427 |
| 0.0031 |
| 0.0036321428571428572 |
| 0.003939285714285715 |
+-----------------------+
Suggestions
Use this function when you need to divide your process among various computers. In the end, you can concatenate all data into a unique data frame and generate a probability of failure and reliability index for this full data.
If three samples with 10,000 lines are generated, when to use
concatenates_txt_files_sampling_algorithm_structural_analysis
, the final dataset will have 30,000 lines.