loss_function_rmse


Loss function: Root Mean Square Error.

rmse = loss_function_rmse(y_true, y_pred)

Input variables

Name Description Type
y_true True values List
y_pred Predicted values List

Output variables

Name Description Type
rmse Root Mean Square Error Float

Problem

f(ytrue,ypred)=1ni=1n(ytrue,iypred,i)2

(1)

n is the number of samples.

Example 1

Considering the true values ytrue=[1.0,2.0,3.0,4.0,5.0] and predicted values ypred=[1.2,2.3,2.9,4.2,5.3], what is the resulting Root Mean Square Error (RMSE)?

# Data
y_true_example = [1.0, 2.0, 3.0, 4.0, 5.0]
y_pred_example = [1.2, 2.3, 2.9, 4.2, 5.3]

# Call function
rmse_value = loss_function_rmse(y_true_example, y_pred_example)

# Print the result
print("Root Mean Square Error (RMSE): {:.4f}".format(rmse_value))
Root Mean Square Error (RMSE): 0.2324