simulated_binary_crossover
x_i_new, of_i_new, fit_i_new, neof, report = simulated_binary_crossover(of_function, parent_0, parent_1, eta_c, n_dimensions, x_upper, x_lower, none_variable=None)
This function performs the simulated binary crossover operator. Two new points are generated from the two parent points (offspring).
Input variables
Name | Description | Type |
---|---|---|
of_function | Objective function | Py function (def) |
parent_0 | Current design variables of the first parent | List |
parent_1 | Current design variables of the second parent | List |
eta_c | Distribution index | List |
n_dimensions | Problem dimension | Integer |
x_upper | Upper limit of the design variables | List |
x_lower | Lower limit of the design variables | List |
none_variable | None variable. Default is None. Use in objective function | None, List, Float, Dictionary, String or any |
Output variables
Name | Description | Type |
---|---|---|
x_i_new | Update variables of the i agent | L'ist |
of_i_new | Update objective function value of the i agent | Float |
fit_i_new | Update fitness value of the i agent | Float |
neof | New solution indicator. It is a Boolean value (1 to indicate a new solution) | Integer |
report | Report about the crossover process | String |
Example 1
from metapy_toolbox import simulated_binary_crossover
# Data
father1 = [3.8, 3.0, 2.7, 3.6, 4.5]
father2 = [4.3, 2.5, 2.1, 1.1, 1.8]
eta_c = 0.30
nDimensions = len(father1)
xUpper = [5, 5, 5, 5, 5]
xLower = [1, 1, 1, 1, 1]
noneVariable = None
# Objective function
def objFunction(x, _):
"""Example objective function"""
x0 = x[0]
x1 = x[1]
of = x0 ** 2 + x1 ** 2
return of
# Call function
xNew, ofNew, fitNew, neof, report = simulated_binary_crossover(objFunction, father1, father2, eta_c, nDimensions, xUpper, xLower, noneVariable)
# Output details
print('x new ', xNew)
print('of new ', ofNew)
print('fit new', fitNew)
print('number of evalutions objective function', neof)
x new [3.6371818435745453, 2.81116885353825, 2.4485231406036525, 3.520665834632936, 5.0]
of new 21.13176208633189
fit new 0.04518393050219797
number of evalutions objective function 2
To check the movement report just apply the following instruction.
# Report details
arq = "report_example.txt"
# Writing report
with open(arq, "w") as file:
file.write(report)
Open report_example.txt
.
Crossover operator - simulated binary crossover
current p0 = [3.8, 3.0, 2.7, 3.6, 4.5]
current p1 = [4.3, 2.5, 2.1, 1.1, 1.8]
random number = 0.7395012830572558 > 0.50, beta = 1.6512726257018162
neighbor_a 3.6371818435745453
neighbor_b 3.6371818435745453
random number = 0.08019318011743659 <= 0.50, beta = 0.24467541415300118
neighbor_a 2.81116885353825
neighbor_b 2.81116885353825
random number = 0.04682156719983155 <= 0.50, beta = 0.16174380201217442
neighbor_a 2.4485231406036525
neighbor_b 2.4485231406036525
random number = 0.4591449525617629 <= 0.50, beta = 0.9365326677063486
neighbor_a 3.520665834632936
neighbor_b 3.520665834632936
random number = 0.8856693688660848 > 0.50, beta = 3.1112060299510342
neighbor_a 7.350128140433897
neighbor_b 7.350128140433897
offspring a = [3.6371818435745453, 2.81116885353825, 2.4485231406036525, 3.520665834632936, 5.0], of_a = 21.13176208633189
offspring b = [3.6371818435745453, 2.81116885353825, 2.4485231406036525, 3.520665834632936, 5.0], of_b = 21.13176208633189
update pos = [3.6371818435745453, 2.81116885353825, 2.4485231406036525, 3.520665834632936, 5.0], of = 21.13176208633189, fit = 0.04518393050219797