uniform_crossover
x_i_new, of_i_new, fit_i_new, neof, report = uniform_crossover(of_function, parent_0, parent_1, n_dimensions, x_upper, x_lower, none_variable=None)
Uniform crossover operator.
Input variables
Name | Description | Type |
---|---|---|
of_function | Is the objective function that will be used to evaluate the result of the crossover | Py function (def) |
parent_0 | Represents the first parent for the crossover | List |
parent_1 | Represents the second parent for the crossover | List |
n_dimensions | Number of dimensions | Integer |
x_upper | Upper limit of the design variables. | List |
x_lower | Lower limit of the design variables. | List |
none_variable | None variable. Default is None. Use in objective function | None, List, Float, Dictionary, String or any |
Output variables
Name | Description | Type |
---|---|---|
x_i_new | Update variables of the i agent. | List |
of_i_new | Update objective function value of the i agent. | Float |
fit_i_new | Update fitness value of the i agent. | Float |
neof | Number of evaluations of the objective function. | Integer |
report | Report about the crossover process | String |
Example 1
# Import
from metapy_toolbox import uniform_crossover
# Data
father1 = [2.9, 4.3, 1.5, 5.0, 3.5]
father2 = [3.9, 1.2, 2.4, 2.7, 2.7]
nDimensions = len(father1)
xUpper = [5, 5, 5, 5, 5]
xLower = [1, 1, 1, 1, 1]
noneVariable = None
# Objective function
def objFunction(x, _):
"""Example objective function"""
x0 = x[0]
x1 = x[1]
of = x0 ** 2 + x1 ** 2
return of
# Call function
xNew, ofNew, fitNew, neof, report = uniform_crossover(objFunction, father1, father2, nDimensions, xUpper, xLower, noneVariable)
# Output details
print('x new ', xNew)
print('of new ', ofNew)
print('fit new', fitNew)
print('number of evalutions objective function', neof)
x new [3.9, 1.2, 1.5, 2.7, 3.5]
of new 16.65
fit new 0.056657223796034
number of evalutions objective function 2
To check the movement report just apply the following instruction.
# Report details
arq = "report_example.txt"
# Writing report
with open(arq, "w") as file:
file.write(report)
Open report_example.txt
.
Crossover operator - uniform crossover
current p0 = [2.9, 4.3, 1.5, 5.0, 3.5]
current p1 = [3.9, 1.2, 2.4, 2.7, 2.7]
random number = 0.23851568162300685 < 0.50
cut parent_0 -> of_a 2.9
cut parent_1 -> of_b 3.9
random number = 0.26714707277389294 < 0.50
cut parent_0 -> of_a 4.3
cut parent_1 -> of_b 1.2
random number = 0.7958990231757312 >= 0.50
cut parent_1 -> of_a 2.4
cut parent_0 -> of_b 1.5
random number = 0.15613086364369877 < 0.50
cut parent_0 -> of_a 5.0
cut parent_1 -> of_b 2.7
random number = 0.7254672965043522 >= 0.50
cut parent_1 -> of_a 2.7
cut parent_0 -> of_b 3.5
offspring a = [2.9, 4.3, 2.4, 5.0, 2.7], of_a = 26.9
offspring b = [3.9, 1.2, 1.5, 2.7, 3.5], of_b = 16.65
update pos = [3.9, 1.2, 1.5, 2.7, 3.5], of = 16.65, fit = 0.056657223796034