michalewicz


The Michalewicz function has d! local minima, and it is multimodal. The parameter m defines the steepness of they valleys and ridges; a larger m leads to a more difficult search [1].

of = michalewicz(x)

Input variables

Name Description Type
x Current design variables of the i agent. List

Output variables

Name Description Type
of Objective function value of the i agent. Float

Problem

\[f(\mathbf{x}) = -\cos{x_{1}} \cos{x_{2}} exp \left ( -\left ( x_{1} - \pi \right )^2 - ( -\left ( x_{2} - \pi \right )^2 \right ) \]

(1)

\[ x_{i} \in [0, \pi], i=1, ... , d; \; d = 2: \;...\; f(\mathbf{x}^*) = -1.8013, \; \mathbf{x}^* = (2.20, 1.57) \]

(2)

\[x_{i} \in [0, \pi], i=1, ... , d; \; d = 5; \;...\; f(\mathbf{x}^*) = -4.687658 \]

(3)

\[x_{i} \in [0, \pi], i=1, ... , d; \; d = 10; \;...\; f(\mathbf{x}^*) = -9.66015 \]

(4)

Example 1

Considering the design variable \(\mathbf{x} = [2.20, 1.57]\), what value does the objective function expect?

x = [2.20, 1.57]

# Call function
of = michalewicz(x)

# Output details
print("of_best michalewicz: of = {:.4f}".format(of))
of_best michalewicz: of = -0.0010

Reference list