dixon_price


The Dixon prince function is a multimodal minimization [1].

of = dixon_price(x)

Input variables

Name Description Type
x Current design variables of the i agent. List

Output variables

Name Description Type
of Objective function value of the i agent. Float

Problem

\[ f(\mathbf{x}) = \left ( x_{1} - 1 \right )^2 + \sum^d_{i=2} i \left ( 2x^2_{i} - x_{i-1} \right )^2\]

(1)

\[x_{i} \in [-10, 10], i=1, ... , d; \; \;...\;f(\mathbf{x}^*) = 0, \; \mathbf{x}_{i} = 2^{-\frac{2^i - 2}{2^i}}, i = 1, ... , d\]

(2)

Example 1

Considering the design variable \(\mathbf{x} = [0, -1]\), what value does the objective function expect?

# Data
x = [0, -1]

# Call function
of = dixon_price(x)

# Output details
print("of_best dixon-Price: of = {:.4f}".format(of))
of_best dixon-Price: of = 0.0000

Reference list