binomial_crossover
x_i_new, of_i_new, fit_i_new, neof, report = binomial_crossover(of_function, parent_0, parent_1, p_c, n_dimensions, x_upper, x_lower, none_variable=None)
Input variables
Name | Description | Type |
---|---|---|
of_function | Objective function. The Metapy user defined this function | Py function (def) |
parent_0 | Current design variables of the first parent | List |
parent_1 | Current design variables of the second parent | List |
p_c | Crossover probability rate (% * 0.01) | Float |
n_dimensions | Problem dimension | Integer |
x_upper | Upper limit of the design variables | List |
x_lower | Represents the lower limits of the range for the problem variables. | List |
none_variable | None variable. Default is None. Use in objective function | None, List, Float, Dictionary, String or any |
Output variables
Name | Description | Type |
---|---|---|
x_i_new | Update variables of the i agent | L'ist |
of_i_new | Update objective function value of the i agent | Float |
fit_i_new | Update fitness value of the i agent | Float |
neof | New solution indicator. It is a Boolean value (1 to indicate a new solution) | Integer |
report | Report about the crossover process | String |
Example 1
from metapy_toolbox import binomial_crossover
# Data
father1 = [4.3, 3.1, 4.8, 3.5, 4.8]
father2 = [3.9, 4.0, 1.6, 1.7, 4.2]
p_c = 0.30
nDimensions = len(father1)
xUpper = [5, 5, 5, 5, 5]
xLower = [1, 1, 1, 1, 1]
noneVariable = None
# Objective function
def objFunction(x, _):
"""Example objective function"""
x0 = x[0]
x1 = x[1]
of = x0 ** 2 + x1 ** 2
return of
# Call function
xNew, ofNew, fitNew, neof, report = binomial_crossover(objFunction, father1, father2, p_c, nDimensions, xUpper, xLower, noneVariable)
# Output details
print('x new ', xNew)
print('of new ', ofNew)
print('fit new', fitNew)
print('number of evalutions objective function', neof)
x new [4.3, 3.1, 1.6, 1.7, 4.2]
of new 28.1
fit new 0.034364261168384876
number of evalutions objective function 2
To check the movement report just apply the following instruction.
# Report details
arq = "report_example.txt"
# Writing report
with open(arq, "w") as file:
file.write(report)
Open report_example.txt
.
Crossover operator - uniform crossover
current p0 = [4.3, 3.1, 4.8, 3.5, 4.8]
current p1 = [3.9, 4.0, 1.6, 1.7, 4.2]
random number = 0.24575911573158438 < p_c = 0.3
cut parent_0 -> of_a 4.3
cut parent_1 -> of_b 3.9
random number = 0.2597531030020548 < p_c = 0.3
cut parent_0 -> of_a 3.1
cut parent_1 -> of_b 4.0
random number = 0.4561316060102293 >= 0.50
cut parent_1 -> of_a 1.6
cut parent_0 -> of_b 4.8
random number = 0.506621634648928 >= 0.50
cut parent_1 -> of_a 1.7
cut parent_0 -> of_b 3.5
random number = 0.5382296135101402 >= 0.50
cut parent_1 -> of_a 4.2
cut parent_0 -> of_b 4.8
offspring a = [4.3, 3.1, 1.6, 1.7, 4.2], of_a = 28.1
offspring b = [3.9, 4.0, 4.8, 3.5, 4.8], of_b = 31.21
update pos = [4.3, 3.1, 1.6, 1.7, 4.2], of = 28.1, fit = 0.034364261168384876