mutation_05_de_movement
This function mutates a solution using a differential evolution mutation (best/1).
x_i_new, of_i_new,\
fit_i_new, neof = mutation_05_de_movement(obj_function, x_r0_old,
x_r1_old, x_best,
x_lower, x_upper,
n_dimensions, f,
none_variable=None)
Input variables
Name | Description | Type |
---|---|---|
obj_function | Objective function. The Metapy user defined this function | Py function (def) |
x_r0_old | Current design variables of the random \(r_0\) agent | List |
x_r1_old | Current design variables of the random \(r_1\) agent | List |
x_best | Best design variables from the population | List |
x_lower | Lower limit of the design variables | List |
x_upper | Upper limit of the design variables | List |
n_dimensions | Problem dimension | Integer |
f | Scaling factor | Float |
none_variable | None variable. Default is None. User can use this variable in objective function | None, list, float, dictionary, str or any |
Output variables
Name | Description | Type |
---|---|---|
x_i_new | Update variables of the \(i\) agent | List |
of_i_new | Update objective function value of the \(i\) agent | Float |
fit_i_new | Update fitness value of the \(i\) agent | Float |
neof | Number of evaluations of the objective function | Integer |
report | Report about the mutation process | String |
Example 1
# Import
from metapy_toolbox import mutation_05_de_movement # or import *
# Data
xR0 = [1.9, 2.1]
xR1 = [2.8, 4.4]
xBest = [1.5, 1.5]
xL = [1.0, 1.0]
xU = [5.0, 5.0]
d = len(xL)
f = 1.2
# Objective function
def objFunction(x, _):
"""Example objective function"""
x0 = x[0]
x1 = x[1]
of = x0 ** 2 + x1 ** 2
return of
# Call function
xNew, ofNew, fitNew, neof, report = mutation_05_de_movement(objFunction, xR0, xR1, xBest, xL, xU, d, f)
# Output details
print('x New: ', xNew)
print('of New: ', ofNew)
print('fit New: ', fitNew)
print('number of evalutions objective function: ', neof)
x New: [1.0, 1.0]
of New: 2.0
fit New: 0.3333333333333333
number of evalutions objective function: 1
To check the movement report just apply the following instruction.
# Report details
arq = "report_example.txt"
# Writing report
with open(arq, "w") as file:
file.write(report)
Open report_example.txt
.
current xr0 = [1.9, 2.1]
current xr1 = [2.8, 4.4]
current x_best = [1.5, 1.5]
Dimension 0: rij = -0.8999999999999999, neighbor = 0.42000000000000015
Dimension 1: rij = -2.3000000000000003, neighbor = -1.2600000000000002
update x = [1.0, 1.0], of = 2.0, fit = 0.3333333333333333